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In distributed systems, attribute staleness is inevitable which leads to stale authorization deci-
sions. While it may not be possible to eliminate staleness, this thesis shows that it is possible to
limit what type of authorization decisions are made when using stale attributes. Two stale-safety
properties, one strictly stronger than the other, are introduced in the context of g-SIS (Group-
Centric Secure Information Sharing): Weak Stale-Safety property and Strong Stale-Safety prop-
erty. Three versions of g-SIS are modeled: a stale-unsafe version, a weakly stale-safe version, and
a strongly stale-safe version. Model checking is used to formally verify which stale-safety prop-
erty/properties, if any, each g-SIS model exhibits. A small model theorem is discussed to extend
the results of model checking to first order temporal logic. Finally general stale-safety is discussed
along with a notion of minimal stale-safety and shown to be broadly applicable to domains other

than g-SIS.
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Chapter 1: INTRODUCTION

The concept of a stale-safe security property is based on the following intuition. In a distributed
system, authoritative information about user and object attributes used for access control is main-
tained at one or more secure authorization information points. Access control decisions are made
by collecting relevant user and object attributes at one or more authorization decision points, and
are enforced at one or more authorization enforcement points. Because of the physical distribution
of authorization information, decision and enforcement points, and consequent inherent network
latencies, it is inevitable that access control will be based on attribute values that are stale (i.e., not
the latest and freshest values). In a highly connected high-speed network these latencies may be in
milliseconds, so security issues arising out of use of stale attributes can be effectively ignored. In a
real-world network however, these latencies will more typically be in the range of seconds, minutes
and even days and weeks. For example, consider a virtual private overlay network on the internet
which may have intermittently disconnected components that remain disconnected for sizable time
periods. In such cases, use of stale attributes for access control decisions is a real possibility and
has security implications.

In general it is not practical to eliminate the use of stale attributes for access control decisions.
Staleness of attributes as known to the authoritative information points due to delays in entry of
real-world data is beyond the scope of this thesis. For example, if an employee is dismissed there
may be a lag between the time that action takes effect and when it is recorded in cyberspace.
The lag we will be concerned with arises when the authoritative information point knows that the
employee has been dismissed but at some decision point the employee’s status is still showing as
active.

In a theoretical sense, some staleness is inherent in the intrinsic limit of network latencies. We
are more interested in situations where staleness is at a humanly meaningful scale, say minutes,
hours or days. For example, a SAML (Security Assertion Markup Language) assertion produced

by an authorization decision point includes a statement of timeliness, i.e., start time and duration



for the validity of the assertion. It is up to the access enforcement point to decide whether or not
to rely on this assertion or seek a more timely one. Likewise a signed attribute certificate will have
an expiry time and an access decision point can decide whether or not to seek updated revocation
status from an authorization information point.

Given that the use of stale attributes is inevitable, the question is how do we safely use stale
attributes for access control decisions and enforcement? The central contribution of this thesis is
to formalize this notion of safe use of stale attributes. This thesis demonstrates specifications of
systems that do and do not satisfy this requirement. I believe that the requirements for stale-safety
identified in this article represent fundamental security properties the need for which arises in se-
cure distributed systems in which the management and representation of authorization state are not
centralized. In this sense, it is suggested that this thesis has identified and formalized a basic secu-
rity property of distributed enforcement mechanisms, in a similar sense that non-interference
and safety [[13] are basic security properties that are desirable in a wide range of secure systems.

Specifically, I present formal specifications of three properties, each strictly stronger than the
next. The most basic and fundamental requirement we consider deals with ensuring that while
authorization data cannot be propagated instantaneously throughout the system, in many applica-
tions, it is necessary that a request should be granted only if it can be verified that it would have
been authorized at some point in the recent past. The strongest property says that to be granted,
the requested action must have been authorized at a point in time after the request and before the
action is performed.

I believe that the weak stale-safety property is a requirement for most actions (e.g., read or
write) in distributed access control systems. There are likely situation when the strong stale-
safety property is (further) required of some or all actions in many applications, for instance, when
deciding whether or not to allow modifications to sensitive materials. The specific application
domain called group-centric secure information sharing (g-SIS) is used as a running example
to illustrate the properties of stale-safety. This thesis formalizes the properties in first-order linear

temporal logic (FOTL), as it is a natural choice for supporting unbounded number of users, objects,



and groups in an information sharing system.

The stale-safe properties require an enforcement model that may comprise an unbounded num-
ber of users, objects, and groups (we call it a large enforcement model) to ensure that any requested
action is only performed if that action was authorized during a previous refresh of authorization
information. Determining the validity of FOTL properties is, in general, undecidable. To alleviate
this problem, a small model theorem is conceived to establish that the proof of FOTL stale-safety
properties against a large enforcement model can be reduced to the proof of propositional linear
temporal logic (PLTL) properties against a small enforcement model containing only one user and
one object within a single grou . For the stale-safety properties presented, this is intuitive since
any given authorization decision will depend on only on a single user, object, and group. This
reduction allows the use of the analytical power of model checking [7]], which can automatically
verify whether a finite model satisfies a PLTL property. The NuSMV [6] model checker is used to
obtain an automated proof for the small enforcement model.

This thesis extends the work previously done in [[17]. This thesis formally specifies stale-safe
security properties in terms of FOTL. A complete specification of three enforcement models for
the g-SIS system is given: unsafe, weak, and strong. To prove the FOTL stale-safe properties it
is shown that reasoning about an enforcement model involving an unbounded number of users,
objects, and groups can be achieved by model checking a machine with only a single user, single
object, and within a single group. Further, this thesis begins to discuss stale-safety in a more
general way. And shows that it can be applied to other domains such as SAAM [8.[36]].

The remainder of this thesis is organized as follows. Chapter[2]discusses work that I have done
to analyze privacy policies, specifically the HIPAA privacy policy. Next Chapter [3] discusses the
group-centric secure informationsharing problem, which will be used throughout this thesis to il-
lustrate stale-safe properties. In Chapter [l the stale-safe security properties are formally specified

using FOTL. In Chapter 3l a model of g-SIS is presented which is the basis for the formal SMV

"When the carriers used in the interpretation of FOTL formulas are finite, it is possible to convert FOTL formulas
into propositional formulas by replacing variables by constants and using conjunction and disjunction to represent
universal and existential quantification, respectively.



model described in Chapter [0l Chapter [7] presents the results of model checking and Chapter
discusses why it is valid to only check the small enforcement model. Chapter [9] presents a dis-
cussion on generalizing stale-safety beyond g-SIS. Finally I discuss related work and conclude in

Chapter



Chapter 2: HIPAA PRIVACY POLICY ANALYSIS

This chapter discusses other projects I have been involved in. First I discuss the paper Privacy
Promises That Can Be Kept: A Policy Analysis Method With Application to the HIPAA Privacy
Rule [5]] for which I was a contributing author and then I discuss my work on parsing and analyzing

the HIPAA privacy policy.

2.1 Privacy Promises That Can Be Kept

Barth et al. [2] introduced the policy specification language Contextual Integrity (CI). Chowdhury
et al. made some modifications to CI so that it could adequately capture the HIPAA privacy
policy (Health Insurance Portability and Accountability Act). It is beyond the scope of this thesis to
discuss the differences between CI and the policy specification language presented in [3]. Instead,

I will discuss some broad ideas from CI that are necessary to understand the motivation behind [55]].

OvVp1, pe, q : PNm : M.Vt :T.send(py, p2, m) A contains(m, q,t) —

Vo oetn A e

pTEnormst (p~€norms—

Figure 2.1: Overall structure of the privacy policy language specified in [5]].

Figure 2.1 shows the FOTL privacy policy used in [3]. The structure is essentially the same
as in CI however we do put some restrictions on the form of the formulae ot and ¢~ that are
not present in CI. The formula specifies when it is OK to send a message m from entity p; to
entity p, containing attributes ¢ about entity g. One of the key ideas presented in CI is the idea of
positive and negative norms (" and ¢~ respectively). Notice that disjunction is used to combine
the positive norms and conjunction is used to combine the negative norms. This reflects the idea
that positive norms allow an action and negative norms deny an action. Said in plain English, all
negative norms must be satisfied and at least one positive norm must be satisfied (thus if any one
negative norm is not satisfied, the send is not an allowed action).
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There are two properties of interest for policies of the form in Figure 2.1 weak compliance
(WC) and strong compliance (SC). An action may be denied if either it doesn’t satisfy past require-
ments or does not satisfy future obligations. This presents a serious problem for the enforcement
of such a policy because it should be clear that there is no way to enforce, at the time one is allowed
to send a message, whether or not future obligations allowing that action will be met. This is where

WC and SC become important for denying or allowing an action.

Definition 2.1.1 (Weak Compliance). An action is said to satisfy WC if it currently meets all past

requirements and there exists a trace such that future obligations can be met.

Definition 2.1.2 (Strong Compliance). An action is said to satisfy SC if it currently meets all past

requirements and there is no trace that will prevent the future obligations from being met.

Note that WC is a minimal constraint for allowing an action. If there does not exist a trace
such that all future obligations can be met, then we know for sure that this action will eventually
violate the policy and thus should not be allowed. There is a subtle difference between WC and SC.
Consider that a doctor discloses information about a patient to a third party. This action is allowed
only if the doctor informs the patient about the disclosure at a later date (a future obligation).
However, the doctor is not allowed to inform the patient of the disclosure if he feels it will harm
the patient

The original disclosure in the above example satisfies WC but does not satisfy SC. This is
because there is a way for the doctor to later inform the patient of the disclosure. However it does
not satisfy SC because the doctor may later decide informing the patient could harm them and
thus would not be allowed to inform the patient about the disclosure thus violating the previous
future obligation. This is a fairly trivial example and obviously exposes a problem with the original
policy. HIPAA has similar rules however instead of two separate norms it is stated as the doctor

must inform the patient unless this future event occurs (i.e. the doctor feels informing the patient

'For instance if the doctor discloses information to law enforcement and later finds out that the patient has become
mentally unstable.



would harm them). Now this policy satisfies both WC and SC since the non-disclosure doesn’t
violate a future obligation if the doctor later decides it would be harmful to the patient.

While the complexity of checking WC is PSPACE, research [3,[11]] has shown that it can be
checked efficiently in practice. On the other hand SC is undecidable in general. It is with this
in mind that we introduced the property that WC entails SC. If a policy has this property then it
means we can effectively enforce SC (otherwise we cannot). The rest of this section is devoted to
giving an overview of the procedure presented by Chowdhury et al. [15] to check whether or not a

policy of the form given in Figure 2.1 has this WC entails SC property.

[Privacy Policy (@)]

Z2h\

Ol 02 e On—l On

[ Slicing] [ Slicing] [ Slic'ing] [ Slicing] [ Slicing] [ Returns a sub-policy which is sufficient for analysis]

1 2 cee On—1 ©n
[ SM] [ SM] [ SM] [ SM] [Proves analyzing small, finite carriers is suﬁicient]
91 92 e Pn—1 ©n
v
PPA | PPA | | PPA | (PPA] (PPA | [Propositional LTL Policy Analysis]

Res; Res; ;- Res,_ Res,

R

Final Result of checking A-property of p

Figure 2.2: Gives an overview of the procedure presented in [3]] to decide whether or not a policy
has the WC entails SC property.

Figure gives a visual overview of the procedure used to determine whether or not a policy
has the property WC entails SC. The first step in the procedure to slice the policy. In general
privacy policies such as HIPAA are extremely large. Policy slicing breaks this large policy into
many smaller policies which are independent of each other. So rather than attempting to analyze

the policy as a whole, we only need to analyze each piece received from policy slicing.



Even after policy slicing, we are still left with FOTL formulae. To determine whether or not
these FOTL formulae satisfy WC entails SC we must write them as finite LTL formulae. This
requires a small model theorem which states that if the finite LTL formula satisfies the property
WC entails SC then so too does the full FOTL formula (for each policy slice). For HIPAA, we
reasoned that since there was no interaction between any two entities or any two messages, that we
could analyze an LTL formula which only instantiated a single sending entity, a single receiving
entity, a single subject, and a single message. In this way we were able to show that the HIPAA

privacy policy indeed does have the property that WC entails SC.

2.2 Automatic Analysis of Federal Laws

This section describes work I did as an independent study to automate the generation of formal
policies directly from the HIPAA text. Currently some portions of HIPAA have been translated to
LTL policies by hand. These documents are stored in marked up formats (such as PDF) and are
not amenable to automated analysis (to test a policy, it must be transcoded by hand into a suitable
form such as SMV modules). Further, such analysis is highly prone to human error (both the initial

creation of LTL policies and secondary transformations).
2.2.1 Structure of Federal Laws

All federal laws are defined by the Office of the Federal Register. There are 50 CFRs (Code
of Federal Regulations) which represent broad areas subject to federal regulation. Each CFR is
divided into many parts that are grouped into subchapters which are further divided into subparts
and finally rules. Each subpart generally has two special rules, 1) Applicability and 2) Definitions,
followed by rules describing the regulations (to be applied as defined in the Applicability rule).
As an example, HIPAA (Health Insurance Portability and Accountability Act) is contained in
45 CFR Parts 160, 162, and 164 (45 CFR contains regulations regarding public welfare). We are
mainly interested in 45 CFR Part 164, Subpart E which specifies guidelines governing individually

identifiable health information.



2.2.2 Getting the Data

All federal laws are available in both HTML and XML formats from the following website:

http://www.ecfr.gov/cgi-bin/ECFR

However, I initially gathered data for HIPAA from HTML text obtained from the following web-

site:

http://www.hipaasurvivalguide.com/hipaa-regulations/hipaa-regulations.php

<Rule number="164.514(f) (1) ">
<Description>
Standard: Uses and disclosures for fundraising. Subject to
the conditions of paragraph (f) (2) of this section, a covered
entity may use, or disclose to a business associate or to an
institutionally related foundation, the following protected
health information for the purpose of raising funds for its
own benefit, without an authorization meeting the requirements
of 164.508:
</Description>
<Rule number="164.514(f) (1) (i)">
<Description>
Demographic information relating to an individual,
including name, address, other contact information, age,
gender, and date of birth;
</Description>
</Rule>

</Rule>

Figure 2.3: Snippet from XML generated from HIPAA privacy rule.

Figure [2.3|shows a snippet from the generated XML file. Looking at the rule number, it can be
seen that this contains a portion of subpart 164, rule 514. Even further, this comprises a portion of
the sixth (letter £) paragraph from section 164 . 514 which itself is divided into several smaller

parts.
2.2.3 Analyzing Meta-Data

The XML snippet in Figure 2.3] shows that many rules reference other rules. For example rule

164.514 (f) (1) describes what information may be shared while rule 164.514 (£) (2) de-



Subpart Meta-Analysis will Connect the graph

Each Root Represents a Section
and each child node represents a paragraph.

ﬁ\ >\
Without meta-analysis, we get a disconnected forreﬂ\> %

Figure 2.4: Figure showing hypothetical results of meta-analysis.

scribes when this information may be shared (i.e. “Subject to the conditions of paragraph (f) (2)
of this section”). Furthermore rule 164 .514 (£) (1) describes an exception to section 164 .508
(which describes the authorization required to share various types of protected health information).

The initial goal is to create a dependency graph for every rule in HIPAA. Figure 2.4]shows a hy-
pothetical result from such an analysis. Since each rule is uniformly labeled, a dependence can be
gleaned from the mere mention of a rule. For instance, the rules foundin 164 .514 (f) (1) havea
clear dependence on the rules found at 164 .514 (f) (2) (since the descriptionof 164 .514 (f) (1)
mentions (£) (2)).

This analysis should partition the law into several branches each applying to different scenarios.
The branches would likely have some overlap and so would not be disjoint. The hope would be
that this could help to generate test cases as well as isolate more complex parts of the law. These

test cases could then be used to generate models suitable for formally model checking the law. It
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may even be possible to automate the construction of these models.
Obviously this initial analysis would incorrectly assume that rule
164.514 (f) (1) depends on section 164.508. Refining the initial analysis requires a less

naive approach. I believe a natural language parser may aid in giving a more correct analysis.

2.2.4 Future Work

The above meta-analysis does not attempt to understand the law in any way. With the help of a
natural language parser it may be possible to convert the English presentation into formal privacy
policies. This is likely possible because the laws are written in a very structured language to begin

with so it may not require a very sophisticated language parser.
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Chapter 3: g-SIS

Let us first discuss a simple distributed system that will be used in the following chapters as a
first illustration of the stale-safety problem. We will consider the problem of information sharing
amongst a group of authorized users. This framework will be referred to as group-centric secure
information sharing or g-SIS [19].

The g-SIS model consists of groups of users and objects. A user ultimately represents a human
being but the term user may be used to describe a process running on behalf of a certain human
actor in the system. An object represents information. Users and objects may be added to and
removed from each of the various groups. A user’s authorization to access an object holds at
any time depending on the relative membership states of the user and the object in question. For
example, a user might be authorized to access an object only if both the user and object are current
members in the group such as is the case with the traditional notion of group authorization in many
operating systems. We could have an additional constraint that the user should be a current member
in the group when the object is added, e.g. the authorization policy used in many secure multicast
applications. Formal models for g-SIS have been studied in detail [18]]. We consider an example

architecture that can enforce g-SIS policies.

3.1 Objectives
The following are the characteristics of the g-SIS application.

e Group membership is expected to be dynamic. That is, a user may join and leave and an

object may be added and removed multiple times.

e A server, called the Control Center (CC), facilitates operation of the system. It maintains
attributes of various entities in the system such as membership status of each user and object

in each group. The CC acts as a PIP.

e Authorization decisions can be made offline. That is, for every access attempt, the CC

12



need not be involved for making the access decision. Clearly, an appropriate client-side
enforcement mechanism is required to enforce group policy. To this end, we assume a user-
side Trusted Reference Monitor (TRM) to enforce group policies in a trustworthy manner.
The TRM caches authorization information such as user and object attributes (e.g., user join
time, leave time, etc.) locally on the user’s access machine (a computer with an appropriate
TRM) and refreshes them periodically with the CC server. The TRM acts as both a PDP and
PEP.

e Objects are made available via super-distribution. In the super-distribution approach, pro-
tected group objects (encrypted with a group key for instance) are released into the cloud
(cyber space). Users may obtain such objects from the cloud and may access them if autho-
rized. For instance, a user may directly email a group object to another user or transfer it
via a USB flash drive. Thus objects need not be downloaded from the CC for each access
attempt. A group key is provisioned on users’ access machines in such a manner that only a
TRM may access the key to encrypt and decrypt group objects. (See the trusted computing
group’s initiative [35] for example.) The TRM faithfully enforces group policies based on

user and object attributes.
3.2 Enforcement Model for g-SIS

Figure [3.1] shows one possible enforcement model for g-SIS and illustrates the interaction of var-
ious entities in g-SIS. A Group Administrator (GA) controls group membership. The Control
Center (CC) maintains authorization information (e.g. attributes of group users and objects) on

behalf of the GA.

e User Join: Joining a group involves obtaining authorization from the GA followed by ob-
taining group attributes from the CC. In step 1.1, the user contacts the GA using an access
machine that has an appropriate TRM and requests authorization to join the group. The GA
authorizes the join in step 1.2 (by setting AUTH to TRUE). The TRM furnishes the autho-
rization to join the group to the CC in step 1.3 and the CC updates the users JoinT'S in step

13
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Figure 3.1: An example architecture of a g-SIS System.

1.4. In step 1.5, the CC verifies GA’s authorization and issues the attributes. JoinTS is the
timestamp of user join (set to a valid value), LeaveTS is the time at which a user leaves the
group (initially set to time of join), gKey is the group key specifying which group objects
can be decrypted, ORL is the Object Revocation List which lists the objects removed from
the group. We assume that these attributes may be accessed and modified only by the TRM

and not by any other entity in the user’s access machine.

Policy Enforcement: From here on, the user is considered a group member and may start
accessing group objects (encrypted using the group key) as per the group policy and using
the attributes obtained from the CC. This is locally mediated and enforced by the TRM.
Since objects are available via super-distribution and because of the presence of a TRM on
user’s access machines, objects may be accessed offline conforming to the policy. The TRM
does not have to contact the CC to make an access decision, rather, the TRM will use the
authorization information cached and refreshed most recently on the local TRM to enforce

the policy every time. For example, the TRM may enforce the policy that the user is allowed

14



to access only those objects that were added after she joined the group and disallow access to
objects added before her join time. Further users may lose access to all objects after leaving
the group. Such decisions can be made by comparing the join and leave timestamps of
user, add and remove timestamps of object. Objects may be added to the group by users by
obtaining an add timestamp from the CC. The CC approves the object, sets the AddTS and
releases the object into the cloud (steps 2.1 to 2.2). We assume that the Add'TS attribute that
reflects the time of the last add is embedded in the object itself. However, the RemoveTS
cannot be embedded in the object because when the object is removed every copy of the
object would have to be found and modified. This is not feasible due to the offline access
nature of the application. Instead, an Object Revocation List (ORL) with elements of the
form (o, AddTS, RemoveTS) is provisioned to the access machine. Note that the ORL lists
the objects removed from the group and it is required to maintain the triple since the same

object could be removed and re-added.

e Artribute Refresh: Since users may access objects offline, the TRM needs to refresh attributes
with the CC periodically (steps 4.1-4.2). How frequently this is done is a matter of policy
and/or practicality. In certain scenarios, frequent refreshes in the order of milliseconds may

be feasible while in others refreshes may occur only once a day.

e Administrative Actions: The GA may have to remove a user or an object from the group.
In step 5.1, the GA instructs the CC to remove a user. The CC in turn marks the user for
removal by setting the user’s LeaveTS attribute in step 5.2. In the case of object removal,
the ORL is updated with the object’s AddTS and RemoveT'S (steps 6.1-6.2). These attribute

updates are communicated to the user’s access machine during the refresh steps 4.1 and 4.2.

As one can see, there is a delay in attribute update in the access machine that is defined by
the refresh window. Although a user may be removed from the group at the CC, the TRM may
let users access objects until a refresh occurs. This is due to attribute staleness that is inherent to

any distributed system. I discuss this topic in detail in the subsequent chapters. Note that building

15



trusted systems to realize the architecture in figure 3.1] is well-studied in the literatur and is
outside the scope of this article. The above system is an instantiation of a more general system
in which the policy information point (in this case the CC) and policy enforcement and decision

points (in this case the TRM is both the PDP and PEP) are decentralized.

ISee related work on trusted computing (http://www.trustedcomputinggroup.org) for example.
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Chapter 4: STALENESS IN g-SIS

As discussed earlier, in a distributed system, access decisions are almost always based on stale
attributes which may lead to critical access violations. In practice, eliminating staleness completely
may not be feasible but a realizable notion of bounding staleness can be conceived. In regards to
access control decisions, the principle of stale-safety states that when it is necessary to rely upon
stale authorization information, if the user is granted access to an object, the authorization to access
that object should have definitely held in the recent past.

In this chapter, I discuss a scenario in which stale attributes lead to access violations in g-SIS

and then informally discuss the stale-safe properties.

4.1 System Characterization

The g-SIS system consists of users and objects, trusted access machines with TRMs, a GA and a
CC. Access machines maintain a local copy of user attributes which they refresh periodically with
the CC. AddTS is part of the object itself. A removed object is listed in the ORL which is provided
to access machines as part of a refresh. For the purpose of this illustration, let us assume that each
user is tied to an access machine from which objects are accessed and there is a single GA and
single CC per group. Further let us assume a group policy in which a user is allowed to access
an object as long as both the user and object are current members of the group and the object was

added after the user joined the group. Thus the g-SIS system can be characterized as follows:

User attributes ~ {JoinTS, LeaveTS}

Object attributes  {AddTS, RemoveTS}

Group attributes  {gKey, ORL}

Access Policy JoinTS(u, g) < AddTS(o, g)A
LeaveTS(u, g) < JoinTS(u, g)A
(0, AddTS(o, g), RemoveTS(o, g))
¢ ORL(g)

17



in which u, o, and g represent a specific user, object, and group, respectively. For simplifying the

presentation we omit the parameters when it is clear from the context.

4.2 Example of Staleness

Figure [4.1] shows a timeline of events involving a single group that can lead to an access violation
due to stale authorization information. User ul joins the group and the attributes are refreshed with
the CC periodically. RT represents the time at which refreshes happen. The time period between
any two RT’s is a Refresh Window, denoted RW;. The first window is RW; (where ul joins), RW;
is the next, and so on. Suppose RW, is the current Refresh Window. Objects o1 and o2 were
added to the group by some group user during RW, and RW, respectively and they are available
to ul via super-distribution. In RW,, ul requests access to ol and o2. A local access decision
will be made by the TRM based on the attributes obtained at the latest RT. If the TRM allows ul
to read o2, this would violate the principle of stale-safety.

The TRM’s access policy would allow access to both o1 and o2 (since o2 is added after ul
joined and the TRM is not aware that ul has left the group). Ideally, ul should not be allowed
to access either of o1 or o2. However note that ul was authorized to access o1l in RW3 whereas
was ul was never authorized to access o2 (in any refresh window).

Furthermore, from a confidentiality perspective in information sharing, granting ul access to
ol even if ul had left the group is relatively less of a problem than granting access to o2. This
is because ul was authorized to access o1 some time in the past and hence the TRM may assume
that 02’s information has already been released to ul. However, there is never a time that ul
was authorized to access 02 and allowing ul access to 02 means that ul may gain knowledge
of information that ul was never authorized to receive. This is a critical violation and should not
be allowed. In summary, it may be OK for a user to access information that the user once had
authorization to access (e.g. o1) but it is never OK to allow a user to access an object that the user

was never authorized to access (e.g. 02).
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Request

Join (u1,g) Add (o01,9) Add (02,9) (u1, 02, g, read)
l | R
rRw, [rw,| rRw, | Rw, | T T RW, :

RT RT RT RT RT

Leave (u1,g) Request
(u1, o1, g, read)

Figure 4.1: A possible system trace allowing ul to access 02 will violate the Principle of Stale-

Safety.

4.3 Formal Property Specification in g-SIS

In this section I use first-order linear temporal logic (FOTL) to specify stale-safety properties of
varying strength for g-SIS. FOTL differs from the familiar propositional linear temporal logic [27]]
by incorporating predicates with parameters, constants, variables, and quantifiers. Temporal logic
is a specification language for expressing properties related to a sequence of states in terms of
temporal logic operators and logic connectives (e.g., A and V). The future temporal operator []
(read henceforth) represents all future states. For example, formula [Jp means that p is true in all
future states. Some of the past operators are © and S (read previous and since respectively) have
the following semantics. Formula ©p means that p was true in the previous state. Note that Op is
false in the very first state. The formula (p S ¢) means that ¢ has happened sometime in the past

and p has held continuously following the last occurrence of ¢ to the present.

4.4 Predicates

Our formalization of stale-safe properties uses the following parameterized predicates:
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request (u,0,9,0p)

Authzce (1,0,9,0p)

join (u,9)
leave (u,9)
add (o,9)

remove (0,9)

perform(u,0,9,0p)

RT (u,9)

4.5 Access Policy Specification

User u requests to perform an
operation op on object o in
group g.

The central access policy (as
seen by the CC) authorizing
user u to perform an opera-
tion op on object o in group
g.

User u joins group g.

User u leaves group g.
Object o is added to group g.
Object o is placed into the
ORL for group g.

User u performs operation
op on object o in group g.
TRM synchronizes its at-
tributes for user u and group

g with the CC.

From here on we do not explicitly write the parameters—it should be understood that the above

predicates require a specific user, group, object, and operation.

We first specify the example access policy discussed in chapter 4.1] using FOTL and label it as
Authzqc. Note that in distributed systems such as g-SIS, events such as remove and leave
cannot be instantaneously observed by the TRM. Such information (that a user or an object is no
longer a group member) can only be obtained from the CC at subsequent refresh times (RT’s).
Authzqc is the centralized access policy that assumes instant propagation of authorization infor-

mation contrasted with Authzg, the access policy that the TRM enforces. The TRM makes a best
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effort to enforce Authz... We argue that a minimal requirement for a best effort is to enforce
stale-safety.

Figure [4.3al shows Authz..—a FOTL representation of a group policy (chapter 4.1)) in a cen-
tralized setting. It states that user u is allowed to perform an operation op on object o if o was
added to group g sometime in the past and both u and o have not left the group since o was added.
It also requires that the user joined the group prior to when the object was added. As the name
implies, Aut hz.c can only be enforced by the CC and not by the TRM. This is because the 1eave
and remove events at the CC are not visible to the TRM until the next refresh. When a request
is received, the TRM does not know what events have happened at the CC since the TRM’s last
refresh of attributes.

Next, I specify two stale-safe security properties of varying strength. The weakest of the prop-
erties requires that a requested action be performed only if a refresh of authorization information
has shown that the action was authorized at that time. This refresh is permitted to have taken place
either before or after the request was made. The last refresh must have indicated that the action was
authorized and all refreshes performed since the request, if any, must also have indicated the action
was authorized. This is the weak stale-safe security property. By contrast, the strong stale-safe
security property requires that the confirmation of authorization occur after the request and before

the action is performed.

4.6 Weak Stale-safe Security Property

Let us introduce two formulas, ; and 5 (see figure d.2)), formalizing pieces of stale-safe security
properties for g-SIS.

Figure [4.3b]illustrates formula ;. Formula ¢, has three requirements:
1. There is no perform since request.
2. All RT’s since request indicate that Authzqc is true.

3. The last RT prior to request indicated that Authz.. was true.
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Authzee(u, 0,g9) =(-remove A =leave)S (add A (—leave S join))
¢1(u,0,9,0p) =0O((-performA (-RT V (RT A Authz))) S
(request A (-RTS (RT A Authzec))))
wo(u, 0,9,0p) =O((—perform A =-RT) S
(RT A AuthzccA
((-perform A (—RT V (RT AAuthzcc))) S request)))

Figure 4.2: Formulas for specifying pieces of stale-safety in g-SIS as well as a definition of

Authz cc-
—Leave —Remove A —Leave
N\ N\
I 11 1
| | |
| | |
Join Add Authz
(a) Ideal Access Policy (Authzcc).
—RT (—Perform A (=RT v (RT A Authz_))) ( —Perform A (—|R1;\v (RT A Authz_))) (—Perform A —RT)
r Aﬁ r A\ 1 f 1"
| | | | | |
I | I [ [
RT A Authz_ Request Perform Request RT A Authz__ Perform
(b) Formula ¢ . (c) Formula o.

Figure 4.3: Illustration of various formulas for g-SIS.

All three of these requirements must be met to satisfy ;. Thus even if the latest refresh happens
after request and indicates that Authzcc is true, ¢; is not satisfied if the last RT prior to
request indicated that Authz.. was false. On the other hand, even if the last RT prior to
request indicated that Authz.- was true, (7 is not satisfied if there is any RT after the request
indicating that Authz.. is false.

Figure d.3d illustrates formula 5 for g-SIS. Again, it requires that there is no per form since
request and that all RT’s since request indicate that Authz. is true. There are two distinc-
tions between ¢ and @o: 1) @s requires at least one RT between request and perf or<p1
does not; and 2) ¢y does not require that there was an RT prior to request indicating that

Authzcc was true—p; does.

Definition 4.6.1 (Weak stale-safety). A g-SIS enforcement model has the weak stale-safe security

IRecall that @5 requires Authzcc be true at the required RT and all others between request and perform.
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property if it satisfies the following FOTL formula:

YVueld,oe O,geG,opeP:

O(perform— @1V ¢2)

Recall that both ¢, and ¢, require that all RT’s between request and per form indicate that
Authzqc is true. However, ¢, requires an RT prior to request while ¢, does not. Therefore
by combining the two formulae in definition ©.6.1l perform is allowed even if there is no R
prior to request so long as there exists at least one RT between request and perform and
all such RT’s indicate that Authz.c is true. Similarly , requires an RT between request
and perform while ¢; does not. Thus definition 4.6.1] allows perform even if there are no
RT’s between request and perform so long as the last RT prior to request indicated that

Authzqc was true.

4.7 Strong Stale-Safe Security Property

This property is strictly stronger than weak stale-safety. For this reason, and because, unlike weak
stale-safety, it is a reasonable requirement for higher assurance systems, it is given it a second

name.
Definition 4.7.1 (Strong stale-safety). A g-SIS enforcement model has the strong stale-safe security

property if it satisfies the following FOTL formula:

Vueld,oe O,geG,opeP:

O(perform— ¢s)

Again recall that @, requires at least one RT between request and perform and that all

such RT’s indicate that Authz.c is true. Thus while weak stale-safety allows authorization to

ZPrecisely, there need not be an RT prior to request indicating that Authzc was true.
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be verified either prior to or after the request, strong stale-safety mandates that authorization is

verified after the request and before performing an operation.
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Chapter 5: MODELING g-SIS

This chapter provides a model for g-SIS. First I give a class diagram to show how the CC, TRM,
and USER interact. Then I use finite state machines to show how Authz gy is defined for the

unsafe, weakly safe, and strongly safe TRMs.

5.1 g-SIS Class Diagrams

- _User
;ngiﬁi:g}nzgqgrgi S
super-distribute (AddTS : Integer)

TRM
" JoinTS : Integer
LeaveTS : Integer
RemoveTS : Integer

RefreshTS : Integer
Ready : Boolean
AuthzTRM : Boolean
refresh(cc : CC) : wvoid
request-perform (AddTS : Integer) : Boolean

. . . . .cc__
JoinTS : Integer

LeaveTS : Integer

AddTS : Integer

RemoveTS : Integer

?ﬁ%ﬁﬂm&ﬁamﬁt{jadihﬁe&XT : void

Figure 5.1: Class diagrams for g-SIS with single user and single object.

I model a total of seven events which each trigger a corresponding method call in the class dia-
gram givenin figure[5.It 1) user_join,2)user_leave,3) object_add,4)object_remove,
5) refresh, 6) request_perform, and 7) super_distribute. Figure gives a brief
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description of the methods found in figure[5.1l The methods set—timestampand super-distribute
are very simple: a timestamp is simply set. The add and remove events for the user/object trig-

ger calls to set -t ime st amp with different t s_ids depending on which event, object_add,
object_remove,user_Jjoin,oruser_leave,occurs. The only restriction on super-distribrut:
is that the parameter Add'TS should be a value generated from the CC after some object_add

event occurrs.

set-timestamp Sets specified timestamp.
super—-distribute Sets AddTS used by the user for requests.
refresh Refreshes TRMs attributes.

request-perform  Requests the TRM to perform and returns the decision.

Figure 5.2: Description of methods.

The last two methods are more involved. Figures [5.3] and [5.4] show how TRM. refresh and
TRM.request-perform are defined, respectively. Note that the TRM relies on the CC to

produce a timestamp for RefreshTS [l that can be compared to other timestamps generated by

the CC.

TRM.refresh(cc : CC) : void

1 JoinTS = cc.JoinTS

2 LeaveTS = cc.LeaveTS

3 RemoveTS = cc.RemoveTS

4 // set RefreshTS

5 cc.set—-timestamp (RefreshTS_1ID)

Figure 5.3: Definition of TRM.refresh(cc : CC).

Note that in figure[5.4] the TRM waits to respond to the request. The field Ready is considered
a free variable and thus the TRM responds after a request is made once the event “becomes ready”
occurs (at the TRM). This is a key feature of this model design for the TRM. This allows us
to model that some time has elapsed between the request to perform and the actual perform (if

allowed by the TRM).

'RefreshTs is set on line 5 in figure 5.3
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TRM.request-perform(AddTS : Integer) : Boolean
1 Ready = False

2 when Ready is True
3 return AuthzTRM
Figure 5.4: Definition of TRM. request-perform (trm : TRM).

5.2 Authzyy as a State Machine

The previous section gave a rough overview of how the CC responds to various events and how the
TRM and User interact. It is the definition of AuthzTRM that we are most interested in because
this definition dictates whether or not this model enforces the g-SIS policy and/or whether or not

it exhibits stale-safety.
5.2.1 Stale-Unsafe Authzgzy

In our example of a stale-unsafe TRM, AuthzTRM is simply the boolean evaluation inside the

TRM:

Authzy = AddTS > RemoveTS A JoinTS > LeaveTS AAdATS > JoinTS

where AddTS is the super distributed timestamp given to the TRM when request-performis
called. The evaluation Authz; is used in the state machines for the weakly stale-safe and strongly

stale-safe definitions of Authz TRM.
5.2.2 Strongly Stale-Safe Authz gy

The strongly stale-safe TRM, STRM, is very simple: there must be a refresh after the initial request.
This is reflected in figure 5.3 by the fact that AuthzTRM is False if STRM is in either the state
No RT (the initial state) or Deny and Aut hzTRM is only true when STRM is in the Allow state.

Thus, if the TRM becomes ready to respond, the value of Aut hz TRM depends on what state STRM
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ﬁrequest—perform

refresh[-Authz ] ‘/’ No RT ‘\“ refresh[Authz ]
f entry/ AuthzTRM = Falseﬁ
\' Deny | < \' Allow ‘\
|

entry/ AuthzTRM = False| _entry/ AuthzTRM = True |

O

refresh [Autth]

refresh [—.Autth]

Figure 5.5: Example of a strongly stale-safe definition of Aut hz TRM.

currently occupies.

5.2.3 Weakly Stale-Safe Authzzy

The weakly stale-safe TRM, WTRM, builds upon the strongly stale-safe TRM, STRM. The major
difference between WTRM and STRM is that WTRM can allow a perform without an additional
refresh. This splits the initial No RT state into two states: the No RT/Deny and No RT/Allow
initial states. Otherwise WTRM is identical to STRM. The value stale can be computed from

the provided AddTS and the TRMs RefreshTS value:

stale = AddTS > RefreshTS

The condition ~stale requires that the object attempting to be accessed was added prior to
the last refresh. This, along with the fact that JoinTS < AddTS if Authzg is True, ensures
weak stale-safety when no subsequent refresh occurs (after the request is made). Figure shows
that if the TRM becomes ready to respond, AuthzTRM will be False if WIRM is in the No
Reply/Deny or Deny state and AuthzTRM will be True if WTRM is in the No Reply/Allow or

Allow state.
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’\\\\lrequest—perform

"NoRT

[ﬁAutth | stale] [Autth & —stale]
| No RT/Deny ‘\ ~ NoRT/Allow
_entry/ AuthzTRM = False entry/ AuthzTRM = True
’@:esh[—'Autth] refresh[Auth}E]‘
\' Deny | - | Allow |
entry/ AuthzTRM = False entry/ AuthzTRM = True

refresh [ﬁAutth]

O

refresh [Autth]

Figure 5.6: Example of a weakly stale-safe definition of AuthzTRM.
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Chapter 6: SMV MODEL OF g-SIS USING REAL TIMESTAMPS

There at least two possible approaches for attempting to model g-SIS using SMV modules. The
choice is how to keep track of timestampsN We can either use real timestamps or relative times-
tamps. Since an SMV model must be finite, using real timestamps limits us to a finite clock; that
is after it reaches its maximum value, the model stops transitioning (time essentially stops). If,
instead it is really the order of events that we care about then we may use relative timestamps to
provide an ordering. The remainder of this chapter discusses how a model using real timestamps

can be realized.

6.1 Modeling Events in g-SIS

For the most part, the seven events considered, 1) user_join, 2) user_leave, 3)
object_add, 4) object_remove, 5) refresh, 6) request_perform, and 7)
super_distribute, are considered free variables. However in modeling these events, I do
impose some realistic constraints. Namely a “remove” action cannot occur unless an ‘“add”
action previously occured and vice VGI‘S&H Further “add”/“remove” events are not allowed to
happen simultaneouslyttnot to be confused with the fact that events modifying the user/object
can happen simultaneously with events modifying the object/user. Further I restrict the event
super_distribute such that it can only occur after an object has been added and cannot oc-
cur while the user is awaiting a response from the TRM; i.e. the user cannot change the value of the
AddTS midway through the evaluation of the policy by the TRM [ Finally a request_perform

cannot occur while the user is awaiting a decision from the TRM (the user cannot make multiple

! Another approach is to abstract away the timestamps altogether.

2Specifically this means that a remove_object event cannot occur unless a add_object previously occurred
and, likewise, a user_1leave event cannot occur unless a user_ join event has occurred and vice versa.

3Because a user/object must initially be “unjoined”, allowing such events to happen simultaneously would neces-
sitate that when they do happen simultaneously that the “remove” event happened second; but this is identical to no
“add” event happening in the first place.

4 After the object has been added, super_distribute can occur at any time so long as the user isn’t awaiting
a response.
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requests simultaneously). When I use real timestamps, with a finite clock, the final restriction is
that no events which generate timestamps are allowed to occur after the clock stops. This includes
all events except request_perform. Notice that the last restriction is the only restriction on

the event refresh (i.e. the event refresh is nearly completely free).
6.1.1 Simultaneous Events

When events occur in the same state, the following shows the order in which they happen:

1. user_join/leave
2. object_add/remove
3. super_distribute
4. request_perform

5. refresh

The rest of this subsection discusses why the LTL formulas dictate this specific ordering.
The very first thing to note is that the events add_object, super_distribute, and
request_perform are allowed to happen all in the same state. There is only a sin-
gle way to interpret such a state which is that the events happen in the order stated (since
super_distribute can only occur after add_object and request_perform can only
occur after super_distribute).

The next two interesting sets of events to consider are when user_join and object_add
occur simultaneously. Consider the following sequence of events: first the event user_leave
occurs followed by simultaneous events of user_join and object_add. This will result
in LeaveTS < AddTS = JoinTS. Now consider what Authz.. should be in this state ac-
cording to Authze. = (—remove A —leave)S (add A (mleaveS join)). We find that
(add A (—leave S join)) is true in this state and thus Authzc. must be be true. Thus we find
that when JoinTS > LeaveTS A AddTS > RemoveTs, if AddTS = JoinTS, then Authz.c

should be true and therefore that when an object_add and user_join occur in the same
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state, object_add must occur second. The order of user_leave and object_remove is
less important since either ordering would result in Authz.. becoming false.
Indeed when Authz.c is defined as JoinTS > LeaveTS A AddTS > RemoveTS A AddTS >

JoinTS all three models have the following property

O (Authzcc < ((-remove A ~leave) S (add A (mleave S join)))) (6.1)

If, instead we prefer that when user_join and object_add occur simultaneously that
the object_add occur first, then Authz.. should be false in that state and it requires a slight
modification to our definition of Authzc.: Authzec = (—remove A —leave)S (add A
(mleave S join) A ©(—leave S join)). In this case we find that we should use AddTS >
JoinTS§ rather than AddTS > JoinTS and indeed modeling results confirm this!] It is worth not-
ing at this point that the original definition of Authz.. is preferable since it requires fewer states
to generate counterexamples.

The next event to consider is when refresh occurs with other events. The event refresh
is always considered to happen last when combined with other events. As for “add”/“remove”
events this is a natural choice since refresh triggers the TRM to update its attributes (which
presumably were just updated by the CC). Otherwise, when a refresh event occurs, the TRM
would need to get the previous values from the CC. However, just as in the case with user_join
and object_add, the definition of Authzc, ¢1, and @, dictates that the model behave this
way. Further we can see that re f re sh must be considered to have happened after a simultaneous

request_perform. This is due to the definition of strong stale-safety.

3T have played with this definition, when I change the > to only > then Authzcc in the model is no longer
equivalent to the LTL definition.

6Since I use the model’s definition of Aut hzq in the LTL specifications, so long as the definition of Authzy in the
TRM matches the definition of Authzcc, all of the stale-safe properties remain intact regardless of which convention
T use.
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6.2 Minimal Clock Size

A naive first estimate might be that the minimum clock size must be seven to match the number of
possible events. As discussed in the previous section, we can allow events to occur simultaneously

which will serve to greatly reduce the minimum necessary clock size.

Theorem 6.2.1 (Minimal Clock Size). The minimum clock size, capable of generating all mean-

ingful counterexamples, is 2.

In addition to the Weak and Strong Stale-Safe properties (these results are discussed in Chap-
ter [7), there are several others properties which we expect the models to exhibit or expect the
models do not exhibit. Table summarizes these properties. The final property, minimal stale-

safety, is discussed in Chapter [0l

O (Authzcc > The model’s definition of Authz.c is identical to the LTL

((ﬁremove A ﬁleave)g definition.

(add A (—leave S join))))

O(perform — ¢p) The model enforces the LTL definition for Aut hzgy.

O(perform — OAuthzcc) The model enforces Authz.c (none of the models should
have this property).

O(perform — ©Authze:)  The model exhibits minimal stale-safety. STRM and
WTRM should have this property and the stale-unsafe TRM
should not.

Table 6.1: Properties which g-SIS models either should or should not exhibit.

The first two properties in Table that check the model’s definition of Authz.. and that
each model enforces Authzzy, do not influence the minimal clock size. These two properties
are inherent in any g-SIS model (otherwise we wouldn’t be modeling g-SIS rather something
different). Figure shows a possible trace which shows that even STRM can be found to not
enforce Authz.c with only two clock ticks. In the first state, the user joins, the object is added
then distributed, the user then requests, and finally the TRM refreshes. In this first state both
Authzg and Authzqc are true. In the second state, the user leaves and the object is removed and
the TRM responds to the user’s request to perform from the first state. Authz.c is now false while
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Authzg remains true (since there is no refresh in the second state). The user then is allowed to

perform in the third state even though Authz.. was previously false.

J, A, SD, RQ, RT

¢ L
f

L, R, RS

Figure 6.1: Possible trace showing that the TRMs will not always enforce Authzcc.
Abbreviations: J-user_join, A-object_add, SD-super_distribute, RQ-
request_perform, RT-refresh, L-user_leave, R-object_remove, RS-TRM
responds, and P-perform.

We expect that both WTRM and STRM satisfy minimal stale-safety but the unsafe TRM should
not. Therefore we should be able to find a counterexample with a clock size of two. Figure
shows such a trace. In the first state the user joins and the TRM refreshes. Note that both Authzcc
and Authzy are false in this first state. In the second state the user leaves, the object is added
then distributed, the user requests to perform, and the TRM immediately responds to this request.
The TRM is unaware that the user left thus when it naively checks Authzg, the TRM finds that
AddTS > JoinTS and the user is allowed to perform in the third state even though Authzqc
was never true. On the other hand WTRM would not allow this perform because AddTS > RT

therefore the predicate stale = AddTS > RT is true and Authzg is considered stale.

J,RT P

¢ .
!

L, A, SD, RQ, RS

Figure 6.2: Possible trace showing that the unsafe TRM may allow a perform even
though Authz.. is never true. Abbreviations: J-user_join, A-object_add, SD-
super_distribute, RQ-request_perform, RT-refresh, L-user_leave, R-
object_remove, RS-TRM responds, and P-perform.

There are two main reasons that a clock of size two suffices. The first reason is that Authzqc
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is a boolean value, thus we need two states (two clock ticks) to allow it to take on its two different
values. In the case that we require add_object to occur before user_join, we would need
three clock ticks because it would not be possible for Authzq. to be true in the first state (the
soonest Authzq: can become true is the second state). The second reason is that perform is
allowed to happen in the third state (so in a sense while we only need two clock ticks, we need
three states). We need to allow Authz.- to become true and become false (two ticks) and then
perform to occur. This behavior is inherent in all of the properties since per form always
implies something about the previous state.

The question remains whether or not we could get counterexamples with fewer clock ticks. In
fact, with a clock size of one, both the unsafe TRM and WTRM fail to enforce Strong Stale-Safety!
However, with a clock size of one, all three TRMs will now enforce Authz.. and Weak Stale-
Safety. It may seem counterintuitive that the unsafe TRM and WTRM enforce Authz.. yet fail to
enforce Strong Stale-Safety. Recall that the clock only restricts how many “add”/“remove” events
can occur. The user can continue to request indefinitely. Therefore it’s possible for Authzqc to
become true in the first state and remain true (because the user/object cannot be removed after this
initial state). Meanwhile the user may make a request later for which there is no refresh event
thus violating Strong Stale-Safety. This reiterates why the minimum size of the clock is two: there
must be one state to allow Authz. to become true and another to allow Authz.. to then become

false.

6.3 SMYV Modules

I chose to use the open-source model checker NuSMV [[6] because it supports past temporal opera-
tors and it is a BDD-based, highly-optimized model checking tool that can handle a relatively large
state space. NuSMYV requires as input a model written in the SMV modeling language. NuSMV

supports a modular design through the use of Moduled]. Every SMV model requires a MAIN

T view the SMV Modules as very similar to objects and used an object-oriented approach when designing these
models.
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module which acts as the entry point.

The SMV modules I created mirror very closely the classes presented in Chapter [3l so there
are separate modules for the CC, TRM, and User. In addition, there are three helper modules:
CLOCK, EVENTS, and question-response. The module CLOCK is responsible for creating
timestamps and stopping after the clock reaches a maximum value (which can be set through a
script). The module EVENTS is responsible for enforcing the constraints presented in Section [6.1]
(the events are largely left free). Finally the module question-response is used to model the
interaction between the user and the TRM when the user makes a request. When a request is made,
the question-response will eventually trigger the TRM to respond, which could happen in the
same state as the request or an arbitrary number of states later

The full SMV code can be found in Appendix [Al I only present the definition of Authz gy

here for each of the three TRMs created. First, all three TRMs have the macro authzE:

authzE := join_ts > leave_ts & user.add_ts >= join_ts & user.add_ts > remove_ts;

The unsafe TRM merely defines authzTRM to be equal to authzE. Just as in Chapter [3] I

will begin with STRM’s definition of authzTRM:

init (authzTRM) := request & refresh & authzE;

next (authzTRM) := case
—— initialize to FALSE if there is no refresh or authzE is FALSE
next (request) : next (refresh) & next (authzk);
-— a refresh always just sets authzTRM to authzE.
next (refresh) : next (authzE);
TRUE : authzTRM;

esac;

Note that authzTRM does not change unless a request or refresh occurs. When a request
occurs, authz TRM should become FALSE if there is no refresh or if there is a refresh but authzE
is FALSE. We see that if, after a request, aut hzTRM is FALSE, then the only way for it to become

TRUE is if a refresh occurs that shows authzE to be TRUE.

8Figure[6.1shows an example where the TRM responds in the state following the request and Figure[6.2]shows an
example where the TRM responds in the same state as the request.
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Next I present aut hzTRM for WTRM:

init (authzTRM) := request & authzE & !stale;

next (authzTRM) := case
-— initialize to FALSE if authzE is false or if stale is TRUE.
next (request) : next (authzE) & !next (stale);
-— a refresh always just sets authzTRM to authzE.
next (refresh) : next (authzE);
TRUE : authzTRM;

esac;

This definition is very similar to aut hzTRM for STRM. However, now a refresh isn’t required
when a request is made; instead we must check the condition stale. Again, if authzTRM is
initially FALSE after a request, the only way for authzTRM to become TRUE is for a refresh to

occur showing aut hzE to be TRUE (just as with STRM).
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Chapter 7: RESULTS OF MODEL CHECKING g-SIS

In this section, I present the results of model checking the three following systems: Ag, Ay, Ag
which represent stale-unsafe, weakly stale-safe, and strongly stale-safe enforcement models, re-

spectively (the only difference in the three models is the different TRMs used).

7.1 Small and Large Enforcement Models

I denote the small enforcement model containing a single instance (one user and one object in one

group) of the enforcement module which uses the unsafe TRM as Ag-system.

Definition 7.1.1 (Ay-system). Let A represent a small g-SIS enforcement model defined as below:

AO(uv 0, g) = CC(”) 0, g)) |pa7’allel|
(USER(u,o,q) |rendez|

TRM_UNSAFE(u,o,9))

In which, CC, USER, and TRM_UNSAFE rendezvous (rendez) respectively, and then are com-
posed via parallel composition.

An unbounded finite (UF) enforcement model (or a large model) contains any number of in-
stances of a A-system (A, A;, or Ay), ranging over all users, objects, and groups, executing in

parallel, formally,

UF
Ai

| Ai(u,0,9)

u€U.0€0.geG

where i takes on a value from {0, 1, 2}.

In the following subsections, I present several theorems concerning the behavior of each of the
three A systems. In each case, I only model checked the small model. I later argue, in Chapter [8]
that this is sufficient for proving each unbounded finite system also models the FOTL formulas
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presented.

7.2 Unsafe Enforcement Model

Authzqc is not enforceable locally at the TRM, therefore we need to formulate another version that
is enforceable at the TRM. Authz gy, below, shows the re-formulation of Aut hz. as enforceable

by the TRM.

Vu: UVo:ONVg: GVop: P.
D(AuchTRM(u7 0,9, Op) A (_'RT(ua g) S (add(o, g) A (_\RT(U, g) S (RT(U, g)/\

(mleave(u,g)S join(u,q)))))) V (-RT(u,9)S (RT(u,g) A Authzee(u,0,9,0p))))

The occurrence of join, leave and remove are ascertained at RT. However, add is not
subject to this constraint and its occurrence is ascertained independently of RT. Authz gy is a
disjunction of two cases. The first part addresses the scenario in which the requested object was
added after the most recent RT. The second part handles the situation where the object was added
before the most recent RT.

Let us introduce formula ¢, to represent the TRM authorization of u performs an operation op

of oin g:

(Authzrey(u, 0, g,0p) A (mrequest(u, o, g, op)A
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We proved through model checking the following formula for the A system:

Ao(u, 0,9) F B(perform(u,0,9) = wo(u,0,9))

In Chapter[§]T argue that this implies that the unbounded finite system also models this formula.

Theorem 7.2.1 (Enforceability Theorem). The AY* -system enforces Aut hz gy That is:

AVF vy UNo: OVg : G.O(perform(u,o,g) — @o(u,o0,g))

This theorem states that Aut hzry is enforceable by the Ag-system. Recall that O(perform —

o) ensures that the user can perform an action only if Authzg, is satisfied (section [4.3).

Theorem 7.2.2 (Weak Unsafe TRM Theorem). The Aq-system does not satisfy the Weak Stale-

Safety property. That is:

AVF Yy UNo: OVg : G.O(perform(u,o,g) — (1(u,0,9) V a(u,0,9)))

This theorem states that the Ay-system is not stale-safe. Specifically, it fails the weak stale-
safety security property. Recall that this was illustrated earlier in figure (4.1l

Table [Z1] shows the counterexample provided by NuSMV; this shows that the Ag-system fails
the weak stale-safety property. In state 1.1 the user is joined and a refresh occurs, but since the
object has not been added yet, both Authz.. and Authz.. remain FALSE. In state 1.2, the
object is added, super distribution occurs, and the user requests to perform on the object. This
makes both Authz.zy and Authz.. now TRUE. Finallly, in state 1.3, the user performs. This
fails weak stale-safety because the refresh occurs before the object is added. Although the trace
generated by NuSMV didn’t show it, the user could have left in the second state which would have
made Authz.. FALSE but Aut hz;zy, would have still become TRUE and a perform would have

occurred for which the user was never authorized.
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Table 7.1: Counterexample trace generated Table 7.2: Counterexample trace generated

by NuSMV showing that the unsafe TRM by NuSMV showing that the weak TRM
(Ay) does not satisfy weak stale-safety (the (A1) does not satisfy strong stale-safety.
event super_distributeis abbreviated (note that state 2.1 is not shown because all
SD). variables are FALSE in the initial state)

VAR [ 1.1 [ 12 [ 13 | VAR [ 21 [ 22 [ 23 | 24 |
leave false false false leave false false false false
join TRUE | false | false join TRUE | false | false | false
add false | TRUE | false add TRUE | false false false
remove false false false remove false | TRUE | false false
SD false | TRUE | false SD TRUE | false false false
request false | TRUE | false request TRUE | false | TRUE | false
It TRUE | false | TRUE It TRUE | false false | TRUE
authzcc false | TRUE | TRUE authzcc TRUE | false false false
authztrm || false | TRUE | TRUE authztrm || TRUE | TRUE | TRUE | false
perform false | false | TRUE perform false | false | TRUE | TRUE
t 1 2 2 t 1 2 2 2

Evidently, if Ag-system fails the weak property, it would also fail the strong property. The

same counter-example generated by NuSMV for theorem applies here.

7.3 Weak Stale-Safe TRM

Figure [5.6] the state machine used to define TRM_WEAK.

Definition 7.3.1 (A;-system). Let A, represent a small g-SIS enforcement model defined as below.

A1 (U, 0, g) = CC(U, 0, g)) |parallel|
(USER(u,o,q) |rendez|

TRM_WEAK (u, 0, g))

where CC, USER, and TRM_WEAK rendezvous respectively, and then execute concurrently via

parallel composition.
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Theorem 7.3.2 (Weak Stale-Safe TRM Theorem). AV satisfies the Weak Stale-Safe Security

Property.

AVF Evy : UVo: OVg : G.O(perform(u,o,g) — (p1(u,0,9) V @a(u,0,q)))

NuSMV successfully verifies that the A;-system satisfies the weak stale-safe security property.

Obviously, the A;-system does not satisfy the strong stale-safety property.

AVF vy UNo: OVg : G.O(perform(u, 0, g) — pa(u,0,9))

As expected, NuSMV generates a counter-example showing that the A;-system does not satisfy
strong stale-safety.

Table shows the counterexample trace generated by NuSMV. Note that the user performs
twice and that it is the second perform that violates strongl stale-safety. In the first state, the user
joins, the object is added, super distribution occurs, the user requests to perform, and a refresh
occurs. This makes both Authzzy and Authz.. to be TRUE. In the second state, the object
is removed which causes Authzqc to become FALSE but Authzgy remains TRUE. In the 3rd
state, the user performs and also requests to perform again. Finally in the 4th state a refresh occurs
and the user performs. This violates strong stale-safety because there is no refresh after the second
request and before the second perform (recall that refresh events are always considered to happen

last when events occur simultaneously in the same state).

7.4 Strong Stale-Safe TRM

Figure 5.3 shows a our model TRM_STRONG.

Definition 7.4.1 (A,-system). Let A, represent a small g-SIS enforcement model defined as below.
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Ay = CC(u,0,9)) |parallel|
(USER(u,o,q) |rendez|

TRM_STRONG(u, 0, g))
where CC, User, and TRM_STRONG rendezvous respectively, and then execute concurrently via
parallel composition

Theorem 7.4.2 (Strong Stale-Safe TRM Theorem). A, satisfies the Strong Stale-Safe Security
Property.
AVF EVu: UVo: OVg: G.O(perform(u,o,g) — wa(u,0,9g))

NuSMYV successfully verifies that the A,-system satisfies strong stale-safety.
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Chapter 8: VERIFICATION OF UNBOUNDED g-SIS FINITE
ENFORCEMENT SYSTEMS

In Chapter [7]T presented A systems describing three different enforcement models (through their
differing TRM HTS’s). The model checking results for stale-safety regarding these systems rely
on small models (containing a single user, single object, and single group). In this section I argue
that the results in Chapter[7]are valid over multiple or even an unbounded number of users, objects,
and groups.

When model checking the small carrier A systems, there is nothing special about the choice
of user, object, and group—they are anonymous. So intuitively, it should be the case that a system
composed of many A systems would still model the same theorems as the single A systems for all

of its users, objects, and groups.

8.1 Informal Proof of Small Model Validity

First consider a first-order policy of the following form: Vp € P : Ou(p), where ¢)(p) is an LTL
formula which takes the variable p as a parameter. The only restriction on ¢ is that it does not
recognize any subgroups of P. This generally means that p does not contain any predicates or
functions of p—only LTL operators and propositional expressions. This forbids some members of
p € P from being treated differently in the policy. Contrast the above policy with Vp;,ps € P :
OvY(p1, p2). It’s not clear how p; and p, interact inside this formula and thus verification may
require instantiating several p’SIT

I use the HIPAA privacy policy as an example which violates the form of the above policy.
The HIPAA privacy policy has a predicate inrole which takes two parameters: a person/entity and
a particular role (e.g. patient, covered entity, business associate, law enforcement, etc.). This

predicate serves to distinguish actions each role may take and thus treats elements from the sort of

"Note that the formula ¢)(p1, p2) could be something trival like: 1)(p1, p2) = é(p1) A ¢(p2)—this formula is redun-
dant because of the universal quantifier over the domain P and thus could be verified with only a single instantiation
from P.
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all entities differently because the predicate inrole cannot ever be true for some entities (e.g. some
patients are not doctors) and may not be true, under some circumstances, even for entities which
sometimes can take on the particular role (e.g. a patient that is also a doctor but, under the current
circumstance, is acting as a patient).

Just as we must constrain the types of policies this small model theorem applies to, we must
put some constraints on the types of models for which it is valid. Informally, the constraint is that
each instance of the model behaves the “same”. The constraint is similar to the constraint we place
on the types of policies: the model must not treat any instances differently. We say that instances
A and B behave the same if they produce identical traces for the same set of input events. Since
different instances are not required to receive identical input (e.g. if user A joins, this does not
mean that user B joins), the instances will not, in general produce identical traces.

Picture that a large enforcement model consists of many smaller models (instances), labeled
1 through n (each with their own instantiation of the variable p in the policy above). To check
whether the first-order formula is satisfied amounts to individually checking each model. We can
think of the instance labeled as 1 as representative of all of the n instances. If we find a trace such
that some other model, labeled 7, (other than the first) falsified the formula ) (p;), then since all
of the models behave the same way, we know that we can recreate the set of events that caused
instance ¢ to falsify the formula and instead of directing them towards instance ¢, direct them
towards the first instance. Now the first instance will falsify the formula. That is, if it is possible
for any of the instances to falsify the policy then it is possible to falsify the policy with only the
first instance (a single instance).

The policies in section have the above form. The fact that p (in section d.3) is a tuple is
not important. In fact, this illustrates the fact that the policy may have many universally quantified
variables and yet still can be modeled by a single instance of a parameterized system so long as
each of those quantified variables are from semanticaly disjoint domains (i.e. user, object, and
group in our case). To clarify, this reasoning would not hold in general if, for instance, we were

analyzing a policy quantified over doctors and patients since it may be possible for a person to be
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both a doctor sometimes and a patient in other cases. Thus it would not hold that we only need a
single doctor and a single patient. As an example, the policy may specify that doctor d1 cannot
be the patient of doctor d2 for whom d2 is also a patient of d1’s. In the case of such a policy, a
possible small model theorem would need to instantiate, at a minimum, two doctors and a patient

who is never a doctor (so at least three people).
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Chapter 9: DISCUSSION OF GENERAL Stale-Safety

The previous chapters presented g-SIS as an example for studying stale-safety. This section pro-
vides a discussion of stale-safety in a more general context. In g-SIS, stale-safety specifically deals
with access decisions (authorizations). To generalize stale-safety, we will discuss inferences; not
just access decisions. In the example of g-SIS, we may incorrectly infer that a user is allowed
access to a certain object by using stale attributes contained at the TRM. When using stale infor-
mation, there can never be a guarantee that an inference will be correct. The weakest requirement
for stale-safety is that when we make an inference, it should at least have been valid at some point.
With this in mind, I propose a more general definition of stale-safety which can be applied to many
different use cases. In section I show how this definition can be used to identify staleness

violations in SAAM [i8.36].

9.1 Minimal Stale-Safety

We consider two different predicates:

allow(i) Inference i is allowed.
sound(i) The inference 1 is sound.

Note that it’s neither the case that in general allow(i) — sound(i) nor that sound(i) —
allow(i). The first statement is acknowledging staleness—when we allow an inference we do
so with stale attributes and thus cannot be assured that the inference is still sound. The second
statement is acknowledging that 1) an enforcement model is under no obligation to allow all sound
inferences and 2) it might not even be possible for an enforcement model to know that an inference

has become sound (e.g. with periodic refreshes like g-SIS).

Definition 9.1.1 (Minimal Stale-Safety). An enforcement model M, which defines allow(1i), is

said to be minimally stale-safe if it models the following FOTL property:

Vi: I.D(allow(i) — Qsound(i))
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Where 1 is the set of all inferences that M can make.

The © operator (read once) has the following semantics: < p means that p was true at least one
time in the past. Clearly definition captures the spirit of stale-safety by requiring that all
allowed inferences be valid at some point in the past.

Definition0.1.T]is a fairly weak requirement. In practice, one can define a more strict stale-safe
property just as I presented for g-SIS. The pattern used in g-SIS is straightforward: once it is ascer-
tained that an inference is unsound, it is presumed to remain unsound until evidence is presented
otherwise. In g-SIS this is done through periodic refreshes of attributes. If the latest refresh of
attributes determines that user u in group g does not have authorization to perform operation op
on object o, then u is not allowed to perform op on o even if u was previously authorized to do so.

Our definitions of weak stale-safety and strong stale-safety for g-SIS (definitions [4.6.1] and [4.7.1]

respectively) imply minimal stale-safety as defined in definition[9.1.1l

9.2 Staleness in SAAM

SAAM (Secondary and Approximate Authorization Model) is a conceptual framework introduced
by Crampton et al. [8] SAAM uses historical (stale) information to infer an approximate (incom-
plete) access policy. The logic required to instantiate a SAAM depends on the class of access
control policy used. Crampton et al. [8] and Wei et al. [36] present SAAMs for BLP (Bell-
LaPadula) and RBAC (role-based access control) [9,30]], respectively.

The SAAMSs from [8] and [36]] do not consider a dynamic policy. They both assume the policy
never changes in order to infer the exact decision (they use the term safe decisio) from previ-
ously made ones. As an example consider the following scenario describing a BLP access control
policy. There are two subjects s and s’; object o; and it has been previously observed that both
(s',0,append) and (s, 0, read) were allowed. We may infer 1) that s’ has a lower (or equal)
clearance level than o, 2) that s has a higher (or equal) clearance level than o, and therefore that

3) s has a higher (or equal) clearance level than s’. Using the labeling function notation this is

IThere is no relation between our use of the term stale-safety and the use of the term safe decision in [8l36]].
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1) (s’, o, append) 3) (s, o, read)

! Py

A(s) < A(s") < A(o) T A(0) < A(s) < A(s")

2) s and s' are promoted

Figure 9.1: A timeline giving an example of SAAMp; p violating minimal stale-safety.

equivalent to 1) A(s") < A(0), 2) A(s) > A(o0), and 3) A(s) > A(s).

Figure[0.1lshows an example of events where the inference A(s) > A(s), in the above example,
is never true. It shows that between the time when (s, 0, append) and (s, o, read) are both
allowed, that s and s’ are promoted, but remain in the same initial order. They were both initially
at a lower security clearance than o and thus were both allowed to append o. After they are both
promoted, they would then both be allowed to read from o, but not append it anymore. This
shows a possible way that the inference made by SAAMpp, A(s) > A(s'), is never true. Further
this can lead to security leaks contrary to the spirit of a BLP access policy. If we introduce a
second object o' and observe that (s, o', append) is allowed (after the events in figure 0.1)), then
we might mistakenly infer, based on the inference \(s) > A(s'), that (s, o', append) should also
be allowed. Assuming that A(s) < A(0') < A(s') (after s and s’ are promoted) this would allow
subject s’ to propagate information from a higher clearance level to a lower one.

One possible way to prevent this type of stale-safety violation is to attach time stamps to the
attributes just as in g-SIS. Without timestamps in g-SIS, we could not determine whether or not
an object and user have overlapping membership in a group. In the above BLP example, simply
knowing how long each subject and object have maintained their current security clearance level
can help avoid stale-safety violations. E.g. in figure when (s, 0, read) is allowed, if we
know that s, s’, and o all maintained their clearance level since (s, 0, append) was allowed] then

A(s) > A(¢) is a stale-safe inference.

2Which would imply that event 2) in figure 0.1 could not have happened.
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Chapter 10: CONCLUSION

10.1 Related Work

To the best of my knowledge, this is the first effort towards a formalization of the notion of stale-
safety and proof-of-concept verification in distributed systems. The work of Lee et al [22,23] is the
closest to this thesis that I have seen in the literature, but focuses exclusively on the use of attribute
certificates, called credentials, for assertion of attribute values in trust negotiation systems. Lee
et al focus on the need to obtain fresh information about the revocation status of credentials to
avoid staleness and propose different levels of consistency amongst the credentials used to make
a decision. Our formalism is based on the notion of a “refresh time,” that is the time when an
attribute value was known to be accurate. We believe the notion of refresh time is central to
formulation of stale-safe properties. Because Lee et al admit only attribute certificates as carriers
of attribute information there is no notion of refresh time in their framework. Further, formal
specification of stale-safe properties using temporal logic allows designers to ensure stale-safety
in their enforcement models using automated verification techniques such as model checking.

Furthermore, as [22] note, there is a rich body of literature on achieving consistency in dis-
tributed systems (see for a survey). The fundamental problem addressed in this domain is to
achieve consistency in data replication systems and balance it with performance and availability.
For example, discuss a continuous consistency model that explores the range of consistency
levels between strong consistency (where consistency requirement is absolute) and optimistic con-
sistency (where consistency requirement is not critical). In contrast, stale-safety is concerned about
making safe authorization decisions at an enforcement point using attribute values that may be out-
of-date. We envision that stale-safe security properties identified in this article would be used for
making authorization decisions in replicated systems.

Another body of related work is the problem of Time-Of-Check- To-Time-Of-Use (TOCT-

TOU). TOCTTOU is a type of race condition in software that can be exploited to gain unautho-
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rized access to privileged resources. For example, consider a code fragment that checks for user’s
write access to a file name in step 1 (the file name is typically a full path to a specific resource
in UNIX type operating systems) and if the check succeeds, allows the user to write to the file in
step 2. An attacker can exploit this by symbolically linking the file name to a more privileged file
during the time between steps 1 and 2, thereby gaining access to an unauthorized file. The weak
stale-safety property in contrast is not concerned about changes in the resource that is being ac-
cessed. Instead, it is concerned about making an authorization decision based on the authorization
information obtained recently. Specifically, weak stale-safety proposes to disallow certain actions
even if the authorization information confirms access. Thus a system that satisfies the weak or
the strong stale-safety properties is still susceptible to TOCTTOU attacks. For instance, the same
attack described above can be launched against a g-SIS system that does not address TOCTTOU
issues. In an abstract sense, the TOCTTOU problem is similar to stale-safety. Because TOCTTOU
has not been studied formally or systematically, it is difficult to comment on its differences with
respect to the formal notion of stale-safety.

The work of Schneider ( [32]) characterizes security policies enforceable using a security au-
tomata by monitoring system execution. Specifically, it ensures that a program (or the HTS model
in our case) in fact enforces the security policy and terminates the program in case of failure to do
so. In comparison, our work strengthens this by ensuring that the enforced security policies are
stale-safe. While precise enforcement of security policy is critical in high-assurance and safety-
critical systems [20], stale-safety allows a designer to make trade-offs in systems where availability
is more or less equally desirable.

The use of model checking in automating analysis of security policies, properties, and protocols
has attracted a lot of research attention. There has been fruitful research in model checking security
protocols since Gavin Lowe’s seminal work [2526] using model checker FDR for CSP to reveal
a subtle attack of the Needham-Schroeder authentication protocol and cryptographic protocols.
Recently, model checking has been increasingly employed to reason about security properties, es-

pecially in RBAC and trust management systems. Sistla and Zhou [33]] propose a model-checking
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framework for security analysis of RT policies [24]]. Jha and Reps [16] verify such properties
as authorization, availability, and shared access of the SPKI/SDSI policy language using model
checking. Fisler et.al. [[I0] analyze the impact of policy changes on RBAC systems and verify
the separation of duty properties using their own model checking tool called Margrave. Schaad
et. al. [31]] verify separation of duty properties in RBAC systems through NuSMV [6]. Hansen et.
al. utilize an explicit model checking tool called Spin to verify various static and dynamic sep-
aration of duty properties in RBAC. Additionally, other works [1,[12,128.38]] also leverage formal
techniques to verify properties of security and privacy policy specifications.

In extending the small carrier (single) model to the large carrier (multiple entities), I used sim-
ilar reasoning as in [29] to argue that our model checking results can be extended to FOTL. There
are two major differences in my approach to that of [29]]. The first is that the parameterized model
differs from their definition of a BDS (Bounded-discrete data system). The BDS they present has
a specific transition relation which makes the many processes transition in an interleaved fashion.
This is evident by the fact that their transition relation has an existential quantifier, meaning that at
least one process transitions (it can be many, but only one must transition). Contrasting with our
model, our transition relation involves a universal quantifier, indicating that all processes transition
at once, in every state. The second major difference is that our processes cannot modify any values
from the other processes. Ultimately the approach in finding a Small Model Theorem was similar
to [29]that is I found a counterexample in a large system then showed that this counterexample

could be generated by a smaller system (in this case a system of size 1).

10.2 Final Thoughts

Attribute staleness is inherent to any distributed system due to physical distribution of user and ob-
ject attributes. While it is not possible to eliminate staleness entirely, we can still manage and limit
its impact. In this thesis, I proposed three stale-safe security properties: Weak Stale-Safety, Strong
Stale-Safety, and Minimal Stale-Safety. This formalization not only enabled me to precisely state

the properties but also allowed systems to be formally verified. With model checking I proved the
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small model satisfies the properties and, do to the nature of our particular system, extend those

results to FOTL.
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Appendix A: SMV MODULES

The full code of the SMV Modules as well as the compiler script are presented in this Appendix.
Each section contains the code for each of the individual modules and the final section gives the

script for generating a full SMV model that is suitable for NuSMV.

A.1 MAIN.mod

MODULE main ()

VAR

events : EVENTS (trm, clock);

clock : CLOCK();

cc : CC(events.user_join, events.user_leave, events.object_add,
events.object_remove, clock);

user : USER (events.super_distro, cc);

trm : TRM(events, user, cc, clock);

DEFINE

respond := trm.respond;

perform := trm.perform;

rt := events.refresh;

authztrm := trm.authzTRM;

authzcc := cc.join_ts > cc.leave_ts & cc.add_ts > cc.remove_ts

& cc.add_ts >= cc.join_ts;

request := events.request;
remove := events.object_remove;
leave := events.user_leave;

add := events.object_add;

join := events.user_join;

—— check that authzcc satisfies the formula for authzcc
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LTLSPEC G (authzcc <-> ((!remove & !leave) S (add & (!leave S join))))

—-—perform -> authz_TRM

LTLSPEC G(

perform —-> Y(

'perform S ((!rt S (add & (!rt S (rt & (!leave S Jjoin ))))) |
('rt S (rt & ((!'remove & !leave) S add) & (!leave S join))) &
(('request & !perform) S request))

)

)i

—-— perfrom -> authzcc, all three should fail this

LTLSPEC G(perform —-> Y (authzcc))

-— minimal stalesafety

LTLSPEC G(perform —-> O authzcc)

—-—weak-stale safety

—-—unsafe perform should fail, weak and strong should pass

LTLSPEC G(perform -> (Y ((!'perform & (!rt | (rt & authzcc))) S
(request & (!rt S (rt &authzcc)))) | Y(('perform & !rt) S
(rt & authzcc & ((!perform & (!'rt | (rt & authzcc))) S request)))))

—-—strong—-stale safety
LTLSPEC G(perform —-> Y ((!perform & !rt) S(rt & authzcc & ((!perform &

('rt | (rt & authzcc))) S request))))

A.2 EVENTS.mod

MODULE EVENTS (trm, clock)
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VAR
user_join boolean;
user_leave boolean;
object_add boolean;
object_remove boolean;
super_distro boolean;
request boolean;
refresh boolean;
user_joined boolean;
object_added boolean;
object_requested boolean;
can_super_distro boolean;

can_request boolean;

ASSIGN

—— the "add" events are allowed to

init (user_join) := {TRUE, FALSE};

init (object_add) := {TRUE, FALSE};

—-— leave events cannot occur in
an add event has occured)
state.

init (user_leave) := FALSE;

init (object_remove) := FALSE;

—— Init can_super_distro and can_request

—— refresh is completely free

occur in the first state

the same state as add events

so they cannot happen in the initial

(needed before initting
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—— super_distro and request) .

init (can_super_distro) := case
object_add : TRUE;
TRUE : FALSE;

esac;

init (super_distro) := case
can_super_distro : {TRUE, FALSE};
TRUE : FALSE;

esac;

init (can_request) := case
super_distro : TRUE;
TRUE : FALSE;

esac;

init (request) := case
can_request : {TRUE, FALSE};
TRUE : FALSE;

esac;

—— 1init user_joined, object_added, and object_requested

init (user_joined) := case
user_join : TRUE;
TRUE : FALSE;

esac;

init (object_added) := case
object_add : TRUE;
TRUE : FALSE;

esac;
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init (object_requested) := case
request : TRUE;
TRUE : FALSE;

esac;

—— Define user_joined, object_added, and object_requested

next (user_joined) := case
next (user_join) : TRUE;
next (user_leave) : FALSE;

TRUE : user_joined;

esac;

next (object_added) := case
next (object_add) : TRUE;
next (user_leave) : FALSE;

TRUE : object_added;

esac;

next (object_requested) := case
next (request) : TRUE;
next (trm.respond) : FALSE;

TRUE : object_requested;

esac;

—— define when add/remove events are allowed to occur

—— NONE of these events are allowed after the clock stops

next (user_join) := case
!clock.CLOCK_STOPPED : case

—— can only join if user is NOT joined in previous state.
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user_joined : FALSE;
TRUE : {TRUE, FALSE};
esac;
TRUE : FALSE;

esac;

next (user_leave) := case
!clock.CLOCK_STOPPED : case
—— can only leave if user is Jjoined in previous state.
user_joined : {TRUE, FALSE};
TRUE : FALSE;
esac;
TRUE : FALSE;

esac;

next (object_add) := case

!'clock.CLOCK_STOPPED : case
—— can only add if object is NOT added in the previous state
—— (object_added) is initially false (unless object_add
- occurs in the first state).
object_added : FALSE;
TRUE : {TRUE, FALSE};

esac;

TRUE : FALSE;

esac;

next (object_remove) := case
!clock.CLOCK_STOPPED : case
object_added : {TRUE, FALSE};
TRUE : FALSE;
esac;
TRUE : FALSE;

esac;
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Define can_super_distro,

request.
Becomes (and stays)
is added) .

next (can_super_distro) := case
next (object_add) TRUE;
TRUE can_super_distro;
esac;

next (super_distro) := case

super_distro,

(so not while object_requested remains true).

true the first time object_add is true

can_request, and request.

Generally super_distro may become true anytime outside of a request

The same goes for

(an object

—-— can_super_distro eventually becomes true and then stays true

forever,

next (can_super_distro) case

so eventually this case is really what is evaluated.

—— don’t super distribute while waiting for a response.

object_requested FALSE;
TRUE {TRUE, FALSE};
esac;

—— 1f you can’t super distribute,

TRUE FALSE;
esac;
—— Becomes (and stays)

(super distribution occurs).
next (can_request) := case
next (super_distro) TRUE;

TRUE can_request;
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esac;

next (request) := case
next (can_request) : case
—— don’t request while waiting for response
object_requested : FALSE;
TRUE : {TRUE, FALSE};

esac;

-— 1if you can’t request, then don’t
TRUE : FALSE;

esac;

A.3 CC.mod

MODULE CC (user_join, user_leave, object_add, object_remove, clock)

VAR
—-— the CC timestamps go back one further than the clock to setup an
—— initial state (where authzCC is false).

add_ts : 0..MAX_ TIME;

remove_ts : 0..MAX_TIME;

join_ts : 0..MAX_TIME;

leave_ts : 0..MAX_TIME;

ASSIGN
init (add_ts) := case

object_add : clock.t;

TRUE : O;
esac;
init (remove_ts) := case

object_add : 0;

TRUE : clock.t;
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esac;

init (join_ts) := case
user_join : clock.t;
TRUE : 0y

esac;

init (leave_ts) := case
user_join : 0;

TRUE : clock.t;

esac;
next (add_ts) := case
next (object_add) : next(clock.t);

TRUE : add_ts;

esac;

next (remove_ts) := case
next (object_remove) : next(clock.t);
TRUE : remove_ts;

esac;

next (join_ts) := case
next (user_join) : next (clock.t);

TRUE : join_ts;

esac;
next (leave_ts) := case
next (user_leave) : next (clock.t);

TRUE : leave_ts;

esac;



A4 TRM_UNSAFE.mod

MODULE TRM (events, user, cc, clock)

VAR
—-— the CC timestamps go back one further than the clock to setup an
—-— initial state (where authzCC is false).

remove_ts : 0..MAX_ TIME;

join_ts : 0..MAX_ TIME;

leave_ts : 0..MAX_TIME;

refresh_ts : 0..MAX TIME;

authzTRM : boolean;

perform : boolean;

ga : question-response (request, TRUE, FALSE);

ASSIGN

—-— put timestamps in a state where AuthzTRM is false.

init (remove_ts) := case
refresh : cc.remove_ts;
TRUE : O;

esac;

init (join_ts) := case

refresh : cc.join_ts;

TRUE : O;
esac;
init (leave_ts) := case
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refresh : cc.
TRUE : clock.

esac;

init (refresh_ts)
refresh : clo
TRUE : O;

esac;

next (remove_ts)
next (refresh)
TRUE : remove_ts

esac;

next (join_ts) :=
next (refresh)
TRUE : Jjoin_ts;

esac;

next (leave_ts)
next (refresh)
TRUE : leave_ts;

esac;

next (refresh_ts)
next (refresh)
TRUE : refres

esac;

init (perform)

next (perform)

leave_ts;

t;

= case

ck.t;

:= case
next (cc.remove_ts);

4

case

next (cc.join_ts);

i = Ccase

next (cc.leave_ts);

.= Ccase

next (clock.t);

h_ts;

FALSE;

case

ga.respond & authzTRM : TRUE;
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TRUE : FALSE;

esac;
authzTRM := authzE;
DEFINE
add_ts := user.add_ts;
authzE := join_ts > leave_ts & user.add_ts >= join_ts &

user.add_ts > remove_ts;

stale := user.add_ts > refresh_ts;
respond := ga.respond;

request := events.request;

refresh := events.refresh;

A.S TRM_WEAK.mod

MODULE TRM (events, user, cc, clock)

VAR
—— the CC timestamps go back one further than the clock to setup an
—-— initial state (where authzCC is false).

remove_ts : 0..MAX_TIME;

join_ts : 0..MAX_TIME;

leave_ts : 0..MAX_TIME;

refresh_ts : 0..MAX_TIME;

authzTRM : boolean;

perform : boolean;

ga : question-response (request, TRUE, FALSE);
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ASSIGN

—-— put timestamps in a state where AuthzTRM is

init (remove_ts) := case
refresh : cc.remove_ts;
TRUE : O;

esac;

init (join_ts) := case

refresh : cc.join_ts;

TRUE : O;

esac;

init (leave_ts) := case
refresh : cc.leave_ts;

TRUE : clock.t;

esac;
init (refresh_ts) := case
refresh : clock.t;
TRUE : O;
esac;
next (remove_ts) := case
next (refresh) : next (cc.remove_ts);
TRUE : remove_ts;
esac;
next (join_ts) := case
next (refresh) : next (cc.join_ts);

TRUE : Jjoin_ts;

esac;
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next (leave_ts)

next (refresh)

.= Case

TRUE : leave_ts;

esac;

next (refresh_ts)

next (refresh)

next (cc.leave_ts);

.= case

next (clock.t);

TRUE : refresh_ts;

esac;

init (perform)

next (perform)

FALSE;

case

ga.respond & authzTRM : TRUE;

TRUE : FALSE;

esac;

init (authzTRM) := request & authzE & !stale;

next (authzTRM) := case
—— initialize to FALSE if authzE is false or if stale is TRUE.
next (request) : next (authzE) & !next (stale);
—-— a refresh always Jjust sets authzTRM to authzE.
next (refresh) : next (authzE);
TRUE authzTRM;

esac;

DEFINE

add_ts := user.add_ts;

authzE := Jjoin_ts > leave_ts & user.add_ts >= join_ts &
user.add_ts > remove_ts;
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stale := user.add_ts > refresh_ts;

respond := ga.respond;
request := events.request;
refresh := events.refresh;

A.6 TRM_STRONG.mod

MODULE TRM (events, user, cc, clock)

VAR
—-— the CC timestamps go back one further than the clock to setup an
—-— initial state (where authzCC is false).

remove_ts : 0..MAX_TIME;

join_ts : 0..MAX_TIME;

leave_ts : 0..MAX_TIME;

refresh_ts : 0..MAX_TIME;

authzTRM : boolean;

perform : boolean;

ga : question-response (request, TRUE, FALSE);

ASSIGN

—-— put timestamps in a state where AuthzTRM is false.

init (remove_ts) := case
refresh : cc.remove_ts;
TRUE : 0y

esac;
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init (join_ts) := case

refresh : cc.join_ts;

TRUE : O;
esac;
init (leave_ts) := case

refresh : cc.leave_ts;

TRUE : clock.t;

esac;
init (refresh_ts) := case
refresh : clock.t;
TRUE : O;
esac;
next (remove_ts) := case
next (refresh) : next (cc.remove_ts);
TRUE : remove_ts;
esac;
next (join_ts) := case
next (refresh) : next (cc.join_ts);

TRUE : join_ts;

esac;
next (leave_ts) := case
next (refresh) : next (cc.leave_ts);

TRUE : leave_ts;

esac;
next (refresh_ts) := case
next (refresh) : next (clock.t);

TRUE : refresh_ts;



esac;

init (perform)

next (perform)

FALSE;

case

ga.respond & authzTRM : TRUE;

TRUE : FALSE

4

or authzE is FALSE

esac;

init (authzTRM) = request & refresh & authzE;

next (authzTRM) = case
—— initialize to FALSE if there is no refresh
next (request) : next (refresh) & next (authzE);
—-— a refresh always Jjust sets authzTRM to authzE.
next (refresh) : next (authzE);
TRUE authzTRM;

esac;

DEFINE
add_ts := user.add_ts;

A7

authzE

join_ts > leave_ts & user.add_ts >= Jjoin_ts &

user.add_ts > remove_ts;

stale :=
respond
request

refresh

user.add_ts > refresh_ts;

ga.respond;
events.request;

events.refresh;

USER.mod

MODULE USER (super_distro, cc)

VAR
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add_ts : 0..MAX_ TIME;

ASSIGN

init (add_ts) := case
super_distro : cc.add_ts;
TRUE : 0;

esac;

next (add_ts) := case
next (super_distro) : next(cc.add_ts);
TRUE : add_ts;

esac;

A.8 (question-response.mod

—-This models the events required for a question and response. The
—-—action for a question and response is as follows: a question

—-—is asked, then answered. There are three essential parts to
-—this action: the state when the question is recieved, the

—--state when the question is answered, and then the state/states
—-—between the question and the answer. This module is NOT
——concerned with the specific question. It provides a

—--mechanism to automate asking a question, such that the

——internal values can be used to query when the answerer is

——responding and in which state the answerer actually answers.

—-Model: When [ask] becomes true, a question is asked and a response
—--may be given (it also may never be given). It is unclear
—-whether asking before a response is given throws away the old
—-—question, or if the new question is discarded. Therefore

——-both models can be accomodated, however, ONE of the two
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—-—questions MUST be discarded. It is up to the implementation
——to make this decision. It will based on the value of the
——response given @ the time when this question is asked and how

——-that response is calculate.

—-—-If a question is being asked (and has not been answered yet),
——then a response can ONLY be given if [ready] is true (meaning
-—the answerer is "ready" to give a response) or when
——[force-response] is true (meaning the answerer is "consciously"
—-—answering in this state). During states when the answerer is
—-—"ready", a response will be given at random, so being "ready"

——does NOT mean you will definitely respond.

—-—If [force-response] is ALWAYS false, this simulates an answerer
-—that gives a response randomly while they are ready. If, in
—-—addition, [ready] is ALWAYS true, then this simulates an
—-—answerer who responds at random time intervals after a question

-—1is asked.

——If [force-response] is ALWAYS true, then the answerer ALWAYS
——answers as soon as they are ready. If BOTH [force-response]
——AND [ready] are ALWAYS true, then this models an answerer that
—-—-ALWAYS answers the question immediately

MODULE question-response (ask, ready, force_response)

VAR

——these are described in the ASSIGN block

responding : boolean;

respond : boolean;

ASSIGN

——[responding] can ONLY change when a question is asked

—— OR when a response 1is given.
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—-—responding is true EVERYTIME you ask a question
—--remains true up to and including the state in
--which you respond.

init (responding) := ask;

next (responding) := case

--no matter what, if the next value of ask

-— 1s true, then the next value of responding
—-— HAS to be true.

next (ask) : TRUE;

—-—If you don’t ask another question in the

-— next state AND you responded in this state
—-— then next value of responding should be

—-— FALSE.

respond : FALSE;

—-—else remain the same
TRUE : responding;

esac;

and

—-Only respond while responding (i.e. you ARE in the

—— process of responding) and when ready, and ALWAYS

—-— respond when forced to do so (but still ready).

respond := case

—-—respond is FALSE ALWAYS while NOT
—— responding

responding & ready: case

—-—force-response is "greedy",

-— i.e. it ALWAYS forces a response.
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force_response : TRUE;

——-Randomly respond while responding AND
—— answerer is ready. Notice that it IS
—— possible to respond in the same state as the
—-— question. But [responding] MUST be set
-— first, and thus the question MUST happen
—— "before" the response. Code-wise, because
—— the value of [respond] depends on the
—-— current value of responding, the value of
—— [responding] MUST be set before [respond].
—— Since [responding] is set by the current
—— value of [ask], the event models by the
—— boolean [ask] happens before the event
—-— modeled by the event [respond]. The other
-— two ways that respond is set is by the
—— PREVIOUS values of either [respond] or
—— [responding].
TRUE : {TRUE, FALSE};

esac;

—-NEVER respond while NOT responding.
TRUE : FALSE;

esac;

A9 CLOCK.mod

MODULE CLOCK ()
VAR
t : 1..MAX TIME;

ASSIGN
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init (t)

1;
next (t) := case

t < MAX_TIME : t + 1;

TRUE : t;
esac;
DEFINE
CLOCK_STOPPED := t = MAX_TIME;

A.10 CLOCKl.mod

MODULE CLOCK ()
DEFINE
t = 1;

CLOCK_STOPPED := TRUE;

A.11 compile.sh

#!/bin/bash

temp_file="ohgiuwegrbhawefhiu.bak"

if [ $# -ne 3 ]; then
echo "Usage: ./compile.sh <n> <TRM_FILE> <OUTPUT_FILE>"
echo "Example: ./compile.sh 2 TRM_UNSAFE.mod main_unsafe.smv"
exit 1

fi # else continue

if [[ $1 =~ [1-9][0-91% ]]; then
# go ahead and create SMV file
if [ $1 -ne 1 ]; then
echo "cat MAIN.mod EVENTS.mod CLOCK.mod CC.mod $2 USER.mod > $3"
cat MAIN.mod EVENTS.mod CLOCK.mod CC.mod USER.mod question-response.mod \

"$2" > "$3"
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else
echo "cat MAIN.mod EVENTS.mod CLOCKIl.mod CC.mod $2 USER.mod > $3"
cat MAIN.mod EVENTS.mod CLOCKl.mod CC.mod USER.mod question-response.mod \
"g2m > "e3"
fi
else
echo "Usage: ./compile.sh <n> <TRM_FILE> <OUTPUT_FILE>"
echo "Example: ./compile.sh 2 TRM_UNSAFE.mod main_unsafe.smv"
exit 2

fi

# SMV file is already created, now substitute argument given for MAX_ TIME

# everywhere

# Use sed to substitute MAX_TIME with first argument

echo "sed ’s/MAX_TIME/S$1/g’ < $$3 > Stemp_file"

sed s/MAX_TIME/S$1/g < "$3" > "Stemp_file"

echo "mv Stemp_file $3"

mv "Stemp_file" "$3"

echo "$3 SUCCESSFULLY CREATED!!!™"™

exit O
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