Wireless Fingerprinting

Jared F. Bennatt

University of Texas at San Antonio fts180@my.utsa.edu

December 9, 2014

Overview

- Introduction
- 2 First Attempt: WIFI Tracker
- 3 Current Attempt: WiFi Meter
- 4 Results

Goals

- Find geographic location of WiFi access points at UTSA.
- Find MAC Address (BSSID)¹ of each access point.
- Find channel of each access point.

¹BSSID: Basic Service Set Identifier (which is usually the MAC address of the router).

Background

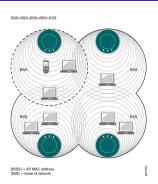
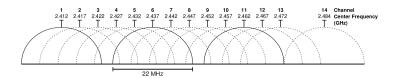



Figure: from Understanding the Network Terms SSID, BSSID, and ESSID

- WLAN (Wireless Local Area Network) is made up of several BSS's (Basic Service Set).
- As you move, while you stay connected to the "same" network, you
 may connect to a different router (BSS).

Channels

- Channels are defined by their carrier frequency (e.g. channel 6 is carried on a frequency of 2, 437 MHz).
- US allows only channel 1-11 for 802.11b/g/n.

WIFI Tracker

- Use Android phone (Samsung Galaxy S2 with Android Jelly Bean 4.1.2).
- Detect network changes.
- Fire GPS locator when network change is detected.
- Collect GPS location along with previous and current network.
- Detect boundaries of various access points and create map based on boundaries.

Problems WIFI Tracker

- Biggest Problem: GPS isn't readily available and almost impossible to get inside a building (I was never able to find my GPS location inside the NPB building).
- Network state doesn't change unless network becomes unavailable (e.g. at the bus stop by the music building or near the roadrunner statue near JPL).
- Need to check more than just network state, but also supplicant state.
- Poor programming: I was getting way too many network change notifications and it was difficult to handle this fact while GPS location was coming in much slower.

WiFi Meter

- Implemented in Android (compatible with Froyo, using Samsung Galaxy S2 with Android Jelly Bean 4.1.2)
- Forget about GPS, just find location of access points by building and room number (or thereabouts).
- Use RSSI (Received Signal Strength Indication) to hone in on access point.
- Android ScanResult.level gives RSSI in dBm (decibel-milliwatts).
- Not necessary to be connected to network to find access point.

dBm

- dBm: decibel-milliwatts.
- power ratio of dB to a reference milliwatt .
- In radio and telephony, usually referenced to 600 Ω .
- In radio frequency (e.g. wireless networks), usually referenced to 50 Ω .
- Log scale, an increase of 3 dBm is roughly equivialant to doubling the power.²

$$dBm = 10 \log_{10} \left(\frac{P}{1 \text{ mW}} \right) \qquad P \equiv \text{power output in mW}$$

Jared F. Bennatt (UTSA)

Problems with WiFi Meter

- RSSI does not directly relate to distance from router.
- RSSI depends on distance and obstacles (e.g. I get a smaller signal in my kitchen even though it's closer to the router but separated by a wall).
- Possible Application? Might be able to detect the structure of a building using tomography techniques via the WiFi signal strength and knowledge of the location of the routers and their power output.

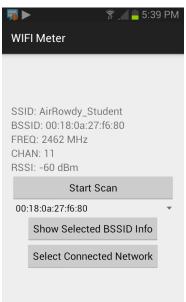
Implementation: WifiMeter

```
public class WiFiMeter extends BroadcastReceiver {
 15
 16⊖
        private static final IntentFilter FILTER = new IntentFilter(
 17
                WifiManager. SCAN RESULTS AVAILABLE ACTION):
 18
 19
        private final Activity main:
 20
        private final WifiManager wMan:
        private List<ScanResult> scanResults:
 23
        private volatile boolean scanning = false;
 24
 25⊖
        public WiFiMeter(final Activity main, final WifiManager wMan) {
 26
            this.main = main;
            this.wMan = wMan;
 28
        }
 29
 300
        @Override
431
        public void onReceive(Context context, Intent intent) {
 32
            scanResults = wMan.getScanResults():
 34
            scanning = false:
 35
 36
 37⊖
        public List<ScanResult> scan() {
 38
            main.registerReceiver(this, FILTER);
 39
            scanning = true;
            wMan.startScan();
 40
 41
            while (scanning)
 42
                SystemClock.sleep(100);
 43
 44
            main.unregisterReceiver(this):
 45
 46
            return scanResults:
 47
        }
 48
49 }
```

Implementation: WifiMeterUI

```
153⊖
        private ScanResult getScanResult() {
154
            final WifiInfo wInfo = wMan.getConnectionInfo();
            targetBSSID = wInfo == null || targetBSSID != null ? targetBSSID
155
156
                     : wInfo.getBSSID():
157
158
            if (targetBSSID == null) {
159
                 return null:
160
             }
161
162
            // else return results
            for (final ScanResult result : results)
163
164
                 if (targetBSSID.equals(result.BSSID))
                     return result:
165
166
167
            return null:
168
```

Implementation: WifiMeterUI (cont.)


```
final String SSID = "SSID: " + result.SSID;
 117
                  final String BSSID = "BSSID: " + result.BSSID;
 118
 119
                  final String FREQ = "FREQ: " + result.frequency + " MHz";
                  final String CHAN = "CHAN: " + getChannel(result.frequency);
 120
                  final String RSSI = "RSSI: " + result.level + " dBm";
 121
 122
 123⊖
                  main.runOnUiThread(new Runnable() {
 124
 125⊖
                      @Override
                      public void run() {
△126
 127
                          ssid.setText(SSID);
 128
                          bssid.setText(BSSID):
 129
                          freq.setText(FREQ);
 130
                          chan.setText(CHAN);
 131
                          rssi.setText(RSSI):
 132
 133
```

WiFi Meter Icon

WiFi Meter UI

- Found 20 routers in NPB building (and I'm sure I missed several).
- Had visual confirmation for all but 6 routers.
- Most routers use channell 11 (2.462 GHz). Channel 1 and channel 6 were the only other two observed (except 5 GHz router described below).
- Virtually all BSSIDs for start with prefix 00:18:0a.
- Router in NPB 2.124 had BSSID 02:18:1a:26:83:06 and operated on channel 149 (5.745 GHz) meaning that it was using the IEEE 802.11a/h/j/n/ac standard.

Questions???